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Least-Squares Analysis
� Consider a system of linear equations             , where 

and             ,            , and                    . Note that the number of 
unknowns,     , is no larger than the number of equations,     . 

� If     does not belong to the range of     , that is,                , then 
this system of equations is said to be inconsistent or 
overdetermined. 

� Our goal is to find the vector(s)     minimizing                 . This 
problem is a special case of the nonlinear least-squares problem 
discussed in Section 9.4. 
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� Let      be a vector that minimizes                 ; that is, for all 

� We refer to the vector      as a least-squares solution to             . 
In the case where              has a solution, then the solution is a 
least-squares solution. Otherwise, a least-squares solution 
minimizes the norm of the difference between the left- and 
right-hand sides of the equation 
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� Lemma 12.1: Let                 ,            . Then,                      if and 
only if                           (i.e., the square matrix          is 
nonsingular).

� Theorem 12.1: The unique vector      that minimizes 
is given by the solution to the equation                      ; that is, 

� The columns of      span the range          of     , which is an    -
dimensional subspace of      . The equation              has a 
solution if and only if                . 

� If            , then                 always, and the solution is 
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� Suppose now that            . We would expect the likelihood of 
to be small, because the subspace spanned by the 

columns of      is very “thin.” 

� Suppose that                . We wish to find a point                 that 
is “closest” to    . Geometrically, the point     should be such 
that the vector                 is orthogonal to the subspace 

� We call     the orthogonal projection of     onto the subspace
It turns out that                                         . 
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� Write                      , where               are the columns of 

� The vector     is orthogonal to          if and only if it is 
orthogonal to each of the columns               of    . 

� Note that                               if and only if for any set of 
scalars                     , we also have 

Any vector in          has the form 
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� Proposition 12.1: Let                  be such that           is 
orthogonal to . Then, 

� Note that the matrix 

plays an important role in the least-squares solution. This 
matrix is often called the Gram matrix (or Grammian).
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� Suppose that you are given two different types of concrete. The 
first type contains 30% cement, 40% gravel, and 30% sand (all 
percentages of weight). The second type contains 10% cement, 
20% gravel, and 70% sand. How many pounds of each type of 
concrete should you mix together so that you get a concrete 
mixture that has as close as possible to a total of 5 pounds of 
cement, 3 pounds of gravel, and 4 pounds of sand? 

� The problem can be formulated as a least-squares problem with 

where the decision variable is                    and      and are the 
amounts of concrete of the first and second types, respectively.
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� The problem can be formulated as a least-squares problem with 

where the decision variable is                    and      and are the 
amounts of concrete of the first and second types, respectively.

� After some algebra, we obtain the solution: 
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� Line Fitting. Suppose that a process has a single input 
and a single output           . Suppose that we perform an 
experiment on the process, resulting in a number of 
measurements. 

The   th measurement results in the input labeled     and the 
output labeled     . We would like to find a straight line given 
by                   that fits the experimental data. 
In other words, we wish to find two numbers,      and    , such 
that                                  . 
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� However, it is apparent that there is no choice of      and     that 
results in the requirement above. Therefore, we would like to 
find the values of      and    that best fit the data. 

0 1 2

2 3 4

3 4 15
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� We can represent our problem as a system of linear equations 
of the form 

Notice that since                                    , the vector     does not 
belong to the range of     . Thus, this system is inconsistent. 

� The solution to this least-squares problem is 
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� Attenuation Estimation. A wireless transmitter sends a 
discrete-time signal                 (of duration 3) to a receiver. The 
real number      is the value of the signal at time   . 

� The transmitted signal takes two paths to the receiver: a direct 
path, with delay 10 and attenuation factor     , and an indirect 
(reflected) path, with delay 12 and attenuation factor     . The 
received signal is the sum of the signals from these two paths, 
with their respective delays and attenuation factors. 
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� Suppose that the received signal is measured from times 10 
through 14 as                    . We wish to compute the least-
squares estimates of      and     , based on the following values

� The problem can be posed as a least-squares problem with

1 2 1 4 7 8 6 3
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� The least-squares estimate is given
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� Discrete Fourier Series. Suppose that we are given a discrete 
time signal, represented by the vector 

We wish to approximate this signal by a sum of sinusoids. 
Specifically, we approximate    by the vector 

where                                      and the vectors        and        are 
given by 
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� We call the sum of sinusoids above a discrete Fourier series. 
We wish to find                                such that 

is minimized. 

� To proceed, we define 

Our problem can be reformulated as minimizing 
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� We assume that                  . To find the solution, we first 
compute         . We make use of the following trigonometric 
identities: for any nonzero integer     that is not an integral 
multiple of      , we have

with the aid of these identities, we can verify that  
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� Hence,                        , which is clearly nonsingular, with 
inverse
Therefore, the solution to our problem is 

We represent the solution as 

We call these discrete Fourier coefficients. 
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� Orthogonal Projections. Let              be a subspace. Given a 
vector            , we write the orthogonal decomposition of     as

where             is the orthogonal projection of     onto     and 
is the orthogonal projection of     onto      . We can 

write                 for some matrix      called orthogonal projector. 
In the following, we derive expressions for      for the case 
where                 and the case where 

� Consider a matrix                           , and                    . Let 
be the range of     . In this case we can write an expression for 
in terms of 
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� By Proposition 12.1 we have                                  , whence
. Note that by Proposition 12.1, we may also 

write  

� Next, consider a matrix                           , and                      . Let
be the nullspace of     . To derive an expression for 

the orthogonal projector       in terms of     for this case, we use 
the formula derived above and the identity                            
(see Theorem 3.4). 
Indeed, if                   , then the orthogonal decomposition with 
respect to      is                      , where 
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� Because                           , we deduce that 
Hence, 

Thus, the orthogonal projector in this case is 
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� Assume that we are originally given three experimental results
, and we find the parameters        and       of 

the straight line that best bits these data. Suppose that we are 
now given an extra measurement point           . We can use 
previous calculations of        and      for the three data points to 
calculate the parameters for the four data points. This 
procedure is called the recursive least-squares (RLS) 
algorithm. 
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� Consider the problem of minimizing                      . The 
solution is given by                            , where 
Consider now the problem of minimizing 

The solution is given by 

Our goal is to write        as a function of       ,      , and the new 
data       and 
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� To this end, we first write       as 

Next, we write  

To proceed further, we write            as 
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� Combining these formulas, we see that we can write        as

where       can be calculated using 

� With this formula,        can be computed using only        ,      ,
and       . Hence, we have a way of using our previous efforts in 
calculating         to compute        . Observe that if the new data 
are consistent with the old data, that is,                    , then the 
correction term is 0 and the updated solution        is equal to the 
previous solution        . 
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� At the           th iteration, we have

The vector                           is often called the innovation. As 
before, observe that if the innovation is zero, then the updated 
solution           is equal to the previous solution

� We can see that to compute           we need           rather than 
. It turns out that we can derive an update formula for

itself.  
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� Lemma 12.2: Let     be a nonsingular matrix. Let     and 
be matrices such that                   is nonsingular. Then,
is nonsingular, and  

� By Lemma 12.2, we get 

For simplicity of notation, we rewrite        as      . We 
summarize by writing the RLS algorithm using 
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� In the special case where the new data at each step are such that 
is a matrix consisting of a single row,                     , and 
is a scalar,                    , we get 
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� Let 

First compute the vector         minimizing                      . Then, 
use the RLS algorithm to find        minimizing

We have 
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� Applying the RLS algorithm twice, we get 
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� Consider now a system of linear equations              , where 
,             ,           , and                      . Note that the 

number of equations is no longer than the number of unknowns. 
There may exist an infinite number of solutions to this system 
of equations. 

� However, as we shall see, there is only one solution that is 
closest to the origin: the solution to              whose norm        is 
minimal. 

� Let       be this solution that is                and                    for any
such that             . In other words,      is the solution to the 

problem 



Solution to A Linear Equation with Minimum Norm

33

� Theorem 12.2: The unique solution       to              that 
minimizes the norm         is given by 

� Example: Find the point closest to the origin of       on the line 
of intersection of the two planes defined by the following two 
equations: 

Note that this problem is equivalent to the problem 
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� Kaczmarz’s algorithm converges to the vector 
without explicitly having to invert the matrix         . This is 
important from a practical point of view, especially when
has many rows.  

� Let        denote the   th row of    , and      the    th component of
and      a positive scalar,                 . Kaczmarz’s algorithm is:
� 1. Set            , initial condition 

� 2. For                    , set 

� 3. Set                 ; go to step 2. 
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� For the first       iterations, we have

where, in each iteration, we use rows of      and corresponding 
components of     successively. For the             th iteration, we 
revert back to the first row of      and the first component of    ; 
that is, 

We continue with the             th iteration using the second row 
of      and the second component of    , and so on, repeating the 
cycle every       iterations. The reason for                 will 
become apparent from the convergence anlaysis. 
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� Theorem 12.3: In Kaczmarz’s algorithm, if              , then
as            . 

� Example: Let 

In this case                  . This figure shows a few iterations of 
Kaczmarz’s algorithm with           and              . We have

,           ,           . The diagonal line passing through the 
point           corresponds to the set                        , and the 
horizontal line passing through the point           corresponds to 
the set                       . 
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� We perform three iterations: 
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� Consider a system of linear equations             , where
and                     . Note that we always have                       . In 
the case                 and                     , the unique solution to the 
equation above has the form                  . Thus, to solve the 
problem in this case it is enough to know the inverse       . 

� A general approach to solving             . The approach involves 
defining a pseudoinverse or generalized inverse of a given 
matrix                 , which plays the role of        when      does 
not have an inverse. In particular, we discuss the Moore-
Penrose inverse of a given matrix    , denoted      . 
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� Lemma 12.3 Full-Rank Factorization:  Let                 , 
. Then, there exist matrices

and                  such that               , where 

� Proof: Because                     , we can find     linearly 
independent columns of     . Without loss of generality, let

be such columns, where      is the    th column of    . 
The remaining columns of      can be expressed as linear 
combination of                   . Thus, a possible choice for      and

are  

where  the entries        are such that for each                       , we 
have                                     . Thus, 
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� Note that if            and                      , then we take               and 

� If, on the other hand,             and                      , then we can 
take              and 

� Example: Let 

We can write a full-rank factorization of      based on the proof 
of Lemma 12.3



Solving Linear Equations in General

41

� Consider the matrix equation                   , where                 is a 
given matrix and                  is a matrix we wish to determine. 
Observe that if      is a nonsingular square matrix, then the 
equation above has the unique solution 

� Definition 12.1: Given                , a matrix                   is called 
a pseudoinverse of the matrix      if                   , and there exist 
matrices                  and                    such that                    and 
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� The requirement                               can be interpreted as 
follows. Each row of the pseudoinverse matrix       of       is a 
linear combination of the rows of       , and each column of 
is a linear combination of the columns of 

� For the case which a matrix                  with             and 
, we can easily check that the following is a 

pseudoinverse of     : 

� Indeed,                                  , and if we define
and                                           , then

� Note that we have                . For this reason,                     is 
often called the left pseudoinverse of     . This formula also 
appears in least-squares analysis (Sec. 12.1)
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� For the case which a matrix                  with             and 
, we can easily check that the following is a 

pseudoinverse of     : 

� Note that we have                . For this reason,                     is 
often called the right pseudoinverse of    . This formula also 
appears in the problem of minimizing        subject to 
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� Theorem 12.4: Let                 . If a pseudoinverse of      
exists, then it is unique. 

� Our goal now is to show that the pseudoinverse matrix always 
exists. In fact, we show that the pseudoinverse of any given 
matrix      is given by the formula 

where       and        are the pseudoinverse of the matrices      and 
that form a full-rank factorization of      ; that is,               , 

where       and      are of full rank (Lemma 12.3)

� Note that we already know how to compute        and       : 
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� Theorem 12.5: Let a matrix                  have a full-rank 
factorization                , with 

,                 , then 

� Example: 

(Does not necessarily hold if 
is not a full-rank 

factorization)
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� We can simplify the expression

to 

This is easily verified by substituting 

� Theorem 12.6: Consider a system of linear equations
,                     . The vector                 minimizes
on       . Furthermore, among all vectors in       that 

minimizes                  , the vector                 is the unique vector 
with minimal norm. 
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� The generalized inverse has the following useful properties
�

�

� These two properties are similar to those that are satisfied by 
the usual matrix inverse. However, the property 
does not hold in general. 


